Convolution- and Attention-Based Neural Network for Automated Sleep Stage Classification
نویسندگان
چکیده
منابع مشابه
Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملSequence-based Sleep Stage Classification using Conditional Neural Fields
Sleep signals from a polysomnographic database are sequences in nature. Commonly employed analysis and classification methods, however, ignored this fact and treated the sleep signals as non-sequence data. Treating the sleep signals as sequences, this paper compared two powerful unsupervised feature extractors and three sequence-based classifiers regarding accuracy and computational (training a...
متن کاملAnalyzing respiratory effort amplitude for automated sleep stage classification
Respiratory effort has been widely used for objective analysis of human sleep during bedtime. Several features extracted from respiratory effort signal have succeeded in automated sleep stage classification throughout the night such as variability of respiratory frequency, spectral powers in different frequency bands, respiratory regularity and self-similarity. In regard to the respiratory ampl...
متن کاملA Neural Network Based Approach to Automated E-Mail Classification
In this paper we present a neural network based system for automated e-mail filing into folders and antispam filtering. The experiments show that it is more accurate than several other techniques. We also investigate the effects of various feature selection, weighting and normalization methods, and also the portability of the anti-spam filter across different users.
متن کاملA Convolution-LSTM-Based Deep Neural Network for Cross-Domain MOOC Forum Post Classification
Learners in a massive open online course often express feelings, exchange ideas and seek help by posting questions in discussion forums. Due to the very high learner-to-instructor ratios, it is unrealistic to expect instructors to adequately track the forums, find all of the issues that need resolution and understand their urgency and sentiment. In this paper, considering the biases among diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Environmental Research and Public Health
سال: 2020
ISSN: 1660-4601
DOI: 10.3390/ijerph17114152